
glTF - what the ?
An overview of the basics of
the GL Transmission Format

glTF was designed and specified by the Khronos Group,
for the efficient transfer of 3D content over networks.

The core of glTF is a JSON file that describes the structure
and composition of a scene containing 3D models. The
top-level elements of this file are:

The JSON file refers to external files that are required for
rendering the 3D content:

Shader programs for
rendering the models,
given as GLSL files

Geometry- or animation
data, contained in binary
files (.BIN)

Textures for the models,
contained in image files
(PNG, JPG...)

The data is referred to via URIs, but can also be included
directly in the JSON using data URIs

scenes, nodes, cameras, animations:
 These describe the basic structure of the scene

meshes, textures, images, samplers, skins:
 Describing the 3D objects that appear in the scene

buffers, bufferViews, accessors:
 The layout of the data that the 3D objects consist of

materials, techniques, programs, shaders:
 Information about how the objects should be rendered

These elements are given as dictionaries. References
between the objects are established by using IDs to
look up the objects in the dictionaries.

"scene": "scene01",
"scenes": {
 "scene01": {
 "nodes": ["node01", "node02", "node03"].
 }
},
"nodes": {
 "node01": {
 "children": ["node04", "node05"],
 ...
 },
 ...
 "node04": { ... },
 "node05": { ... },
 ...
},

Each node may contain a local transformation, given
as a column-major matrix array, or a translation,
rotation and scale, where the rotation is given
as a quaternion. The global transform of a node is
the product of all local transformations on the path
from the scene root to the node

scene01

node01 node02 node03

node04 node05

"node01": {
 "matrix": [
 1,0,0,0,
 0,1,0,0,
 0,0,1,0,
 5,6,7,1
],
 ...
},
"node02": {
 "translation": [0, 0, 0]
 "rotation": [0, 0, 0, 1],
 "scale": [1, 1, 1]
 "camera" : "camera01"
 "meshes" : [
 "mesh01", "mesh02"],
 ...
},

"cameras": {
 "camera01": {
 "name": "camera01",
 "type": "perspective",
 "perspective": {
 "aspectRatio": 1.5,
 "yfov": 0.660593,
 "zfar": 100,
 "znear": 0.01
 ...

The glTF JSON may contain scenes (with
an optional default scene). Each scene
can contain an array of IDs of nodes. Each
of the nodes can contain an array of IDs
of its children. This allows modeling a
scene graph:

Each node may contain a
camera ID, referring to one
of the cameras. The global
transform of the node is
used as the camera matrix.

"animations": {
 "animation01": {
 "channels": [
 {
 "target": {
 "id": "node02",
 "path": "rotation"
 },
 "sampler": "sampler01"
 }
],
 "samplers": {
 "sampler01": {
 "input": "TIME",
 "interpolation": "LINEAR",
 "output": "rotationValues"
 }
 },
 "parameters": {
 "TIME": "accessor03",
 "rotationValues": "accessor04"
 }
 }
}

The animations are defined by multiple elements:
The channels describe the node ID and the
"path", which is the animated property (e.g. the
rotation). A channel refers to one of the samplers.
The sampler defines how to interpolate two of the
parameters. Each parameter refers to the
animation data using one of the data accessors.

Nodes may also refer to meshes. These meshes
are transformed with the global node transform.

"buffers": {
 "buffer01": {
 "byteLength": 102040,
 "type": "arraybuffer",
 "uri": "buffer01.bin"
 }
},

"images": {
 "image01": {
 "name": "image01",
 "uri": "image01.png"
 }
},

"shaders": {
 "shader02_fragment": {
 "type": 35632,
 "uri": "shader02.glsl"
 }
}

......100101
011011

scenes, nodes, cameras, animations meshes, textures, images, samplers, skins

"meshes": {
 "mesh01": {
 "name": "mesh01",
 "primitives": [
 {
 "mode": 4,
 "indices": "accessor01",
 "attributes": {
 "NORMAL": "accessor03",
 "POSITION": "accessor02",
 "TEXCOORD_0": "accessor04"
 },
 "material": "material01"
 }
]
 }
},

"textures": {
 "texture01": {
 "target": 3553,
 "type": 5121,
 "format": 6408,
 "internalFormat": 6408,
 "source": "image01",
 "sampler": "sampler01"
 }
},

The meshes may contain multiple mesh
primitives. These describe the data that is
required for rendering the mesh with OpenGL:
They contain the rendering mode (points, lines,
triangles, ...), a reference to the indices, and to
the attributes of the primitive. These references
 are given as IDs for the
accessors for the data.
The meshPrimitive also
refers to the material
that should be used for
rendering, using the ID of
one of the materials.

The textures contain parameters describing the format (OpenGL constants that can be passed to glTexture2D). They
refer to one of the images, which is the source of the texture. They have a sampler ID that refers to one of the
samplers, which is used for mapping the texture.

buffers, bufferViews, accessors

"buffers": {
 "buffer01": {
 "byteLength": 102040,
 "type": "arraybuffer",
 "uri": "buffer01.bin"
 }
},

Each of the buffers refers
to a binary data file, using
a URI.

"bufferViews": {
 "bufferView01": {
 "buffer": "buffer01",
 "byteOffset": 12213,
 "byteLength": 25272,
 "target": 34963
 },
},

Each of the bufferViews
refers to one buffer, and
defines a byteOffset and
a byteLength. These
describe the part of the
buffer that belongs to
the bufferView. "accessors": {

 "accessor01": {
 "bufferView": "bufferView01",
 "count": 2399,
 "componentType": 5126,
 "type": "VEC2",
 "byteOffset": 0,
 "byteStride": 12
 },
}

The accessors define how the data
of a bufferView is interpreted. It
summarizes the count of elements
in the bufferView, and the type of
the elements. E.g. it may define the
elements to be 2D vectors of floating
point numbers when the type is
"VEC2", and the componentType
is GL_FLOAT (5126). The byteOffset
and byteStride define where the
data for the accessor starts inside
the bufferView, and how many
bytes are between the start of one
element and the start of the next.

materials, techniques, programs, shaders

attribute vec3 a_position;
attribute vec3 a_normal;
attribute vec2 a_texcoord0;

uniform mat4 u_modelViewMatrix;
...
varying vec3 v_position;
...
void main(void) {
...
 v_position = ...;
 gl_Position = ...;
}

Vertex Shader

uniform vec4 u_ambient;
uniform sampler2D u_diffuse;
...
varying vec3 v_position;
...
void main(void) {
 ...
 gl_FragColor = ...;
}

Fragment Shader

"techniques": {
 "technique01": {
 "program": "program01",
 "attributes": {
 "a_position": "position",
 "a_normal": "normal",
 "a_texcoord0": "texcoord0"
 },
 "uniforms": {
 "u_ambient": "ambient",
 "u_diffuse": "diffuse",
 "u_modelViewMatrix":
 "modelViewMatrix", ...
 },
 "parameters": {
 "position": {
 "type": 35665,
 "semantic": "POSITION"
 },
 "modelViewMatrix": {
 "type": 35676,
 "semantic": "MODELVIEW"
 },
 ...
 "ambient": {
 "type": 35666
 },
 "diffuse": {
 "type": 35678
 }
 }
 }
},

Each of the materials refers to
a technique. They can define
the values that overwrite the
default values of the technique
parameters.

buffer
 byteLength = 35

bufferView
 byteOffset = 4
 byteLength = 28

0 4 8 1612 20 24 28 32

4 8 1612 20 24 28 32

accessor
 byteOffset = 4

 byteStride = 12

 componentType = GL_FLOAT
 componentType = VEC2

8 1612 20 24 28 32

8 1612 20 24 28

The buffer data is read from a file:

The bufferView defines a segment of the buffer data:

The accessor defines an additional offset

The accessor defines a stride between the elements:

The accessor defines that the elements are 2D float vectors:
8 1612 20 24 28

x0 y0 x1 y1

So this accessor may be referred to, for example, by a mesh primitive,
to access the data that is used as 2D texture coordinates.

1.4
2.1
...()

0.1 0.6 2.1 3.3

1.7 1.2 1.8 1.4
2.1 2.4 2.0 1.6
...

node02

The sampler looks up
the key frame for the
"global" time:

Input parameter
accessor data
(TIME key frames)

Output parameter
accessor data
(value key frames)

0 1 2 3 4 5 6

Global time:

The sampler interpolates the values

The channel defines
the target node and
property (e.g. the
rotation)

(skins are not part of this overview)

"samplers": {
 "sampler01": {
 "magFilter": 9729,
 "minFilter": 9987,
 "wrapS": 10497,
 "wrapT": 10497
 }
},

"images": {
 "image01": {
 "name": "image01",
 "uri": "file01.png"
 }
},

The samplers
describe the
wrapping and
scaling of textures, using OpenGL
constants that can be passed to
glTexParameter.

The images refer
to an image file
using a URI

©2016 Marco Hutter
www.marco-hutter.de

"shaders": {
 "shader01_v": {
 "type": 35633,
 "uri": "shader01_vertex.glsl"
 }
 "shader02_f": {
 "type": 35632,
 "uri": "shader02_fragment.glsl"
 },
},

"programs": {
 "program01": {
 "vertexShader": "shader01_v"
 "fragmentShader": "shader02_f",
 "attributes": [
 "a_normal",
 "a_position",
 "a_texcoord0"
],
 }
},

Each of the techniques refers
to its program. The keys of the
technique attributes dictionary
are the attributes of the vertex
shader. They are mapped to the
technique parameters. There,
their type is defined with a
constant like GL_UNSIGNED_BYTE,
or GL_FLOAT_MAT3. They may
also receive a certain semantic.
Attribute semantics may be
POSITION, NORMAL and others.
The semantic is used for looking
up the mesh primitive attribute
whose accessor provides the
attribute data.

The keys of the technique uniforms dictionary are the uniforms of the vertex- and fragment
shader. They are mapped to the technique parameters where they receive a type, like
GL_FLOAT_MAT3 or GL_SAMPLER_2D, and an optional semantic like MODELVIEW or PROJECTION.
This semantic is usually interpeted in the context of the node that contains the mesh with
the mesh primitive that should be rendered: The global transform of the node defines the
current MODEL matrix. The VIEW matrix is determined by the transform of the currently
active camera.

""materials": {
 "material01": {
 "name": "material01",
 "technique": "technique01",
 "values": {
 "ambient": [0,0,0,1],
 "diffuse": "texture01"
 }
 }
},

The programs refer to their
vertexShader and their
fragmentShader, and list
the attributes that appear
in the vertex shader.

The shaders use URIs to
refer to GLSL files that
contain the shader code.

Summary: Rendering a glTF

The scene graph consisting of nodes is traversed, keeping track of the current node and the accumulated (global)
transform. When a mesh with a mesh primitive is found, its material is looked up. The technique of the material
determines the program and the shaders to be used for rendering.

The attribute inputs of the shader program are set based on the attributes of the technique: E.g. the attribute with
the name "a_position" is looked up in the technique attributes dictionary, to find the technique parameter
"position", with the type GL_FLOAT_VEC3 and the semantic "POSITION". This is looked up in the mesh primitive
attributes, to find the ID of an accessor that provides the input data for the attribute.

The uniform inputs of the shaders are set by examining the remaining technique parameters. They may have default
values, or values that are overwritten by the corresponding value of the material. If the parameter has a semantic,
for example, "MODELVIEW", then the uniform parameter value is computed from the current context: The MODEL matrix
is the global transform of the current node. The VIEW matrix is the inverse of the camera matrix, which is the global
transform of the node that contains the currently active camera.

Further resources
This overview is not official and not complete (and maybe not even correct). Its goal is to give an
overview of the basic ideas and concepts, and the relationships of the entities that appear in a glTF.
The definite and official references for glTF are
 - the Khronos glTF landing page: https://www.khronos.org/gltf
 - the Khronos glTF GitHub repository: https://github.com/KhronosGroup/glTF
which contain the official specification and sample models.

Version 0.1.0

Feedback:
gltf@marco-hutter.de

